Materia granulare


Disambiguazione – "granulato" rimanda qui. Se stai cercando la forma farmaceutica, vedi granulato (forma farmaceutica).

La materia granulare (o granulata) è un insieme di particelle solide, di dimensioni sufficientemente grandi tali da non renderle soggette a fluttuazioni o moti termici. Il limite inferiore di dimensioni di queste particelle è quindi di circa 1 µm, al di sotto del quale le particelle avrebbero caratteristiche colloidali.

Il limite superiore non è ben definito: anche i blocchi di ghiaccio degli iceberg possono considerarsi inclusi nella categoria, dato che le leggi che ne governano il moto sono assimilabili. La polvere, essendo un insieme di particelle solide di diametro inferiore ai 500 µm può in parte essere considerata nella categoria di materia granulata, così come la sabbia; altri esempi possono essere il carbone, il riso, il caffè, i fertilizzanti, le sfere di un cuscinetto e la neve.

I materiali granulati sono importanti in numerose applicazioni industriali, come nell'industria farmaceutica, in agricoltura, nella produzione di energia e nell'edilizia.

Le ricerche nel campo della materia granulata risalgono a Charles-Augustin de Coulomb, che formulò la sua legge sull'attrito sulla base di studi su particelle solide granulari.

Indice

Descrizione


Il comportamento che un materiale solido ha quando è suddiviso in granelli più o meno fini è assai diverso dallo stesso materiale allo stato di solido, di liquido o di gas. In sintesi i materiali granulati mostrano caratteristiche simili ai fluidi newtoniani ma dissipano la loro energia molto rapidamente, e mostrano, a seconda della loro energia, caratteristiche di solidi, liquidi o gas. Ad esempio quando l'energia di un insieme di granuli è bassa questi sono immobili e il loro insieme si comporta come un solido. Acquisendo energia (ad esempio agitando il contenitore) i granuli cominceranno a scorrere fra di loro come un liquido; ma questo moto cesserà immediatamente se si cessa di fornire energia.

Un liquido tende a non avere una forma propria, ma acquisisce la forma del contenitore in cui si trova. Un materiale in polvere acquisisce solo in parte e in talune condizioni la forma del contenitore. Se ad esempio un recipiente viene riempito con una polvere, inclinato di un certo angolo e riportato alla posizione di equilibrio, questa potrà assumere alla superficie una forma che dipenderà strettamente dall'angolo di inclinazione e dalla velocità con cui il recipiente viene riportato allo stato iniziale. Questo comportamento è nettamente diverso da quello di un liquido che invece tenderà ad assumere una conformazione superficiale uniforme e orizzontale. Contrariamente a un liquido, nel contenitore la pressione che esercita a varie profondità non segue l'andamento lineare di un liquido, perché parte della spinta si scarica sulle pareti stesse del contenitore. Questo fenomeno può per esempio determinare cedimenti strutturali di silos che erano stati progettati senza tener presente questo fenomeno.

Diverso è anche il comportamento di una polvere a un'azione di miscelamento, rispetto a un solido o a un liquido. Una polvere può demiscelarsi col procedere dell'agitazione (segregazione), processo assai temuto in campo alimentare, farmaceutico, chimico. Particolare è l'effetto noto come "Brazil Nut Effect":[1] particelle in un contenitore posto in agitazione segregano in modo che le particelle più grandi si concentrano verso l'alto quando il contenitore è di forma cilindrica, verso il basso quando la forma è conica.

In sintesi le caratteristiche dei materiali granulati includono:

Caratteristiche facilmente misurabili

Fattori che ne influenzano il comportamento

Diversi sono i parametri che agiscono sul comportamento della materia granulare .

Tra quelli intrinseci delle particelle possiamo ricordare:

Tra quelli esterni abbiamo:

Essi hanno una grande influenza sulla fluidità, ovvero la capacità della polvere di scorrere sotto l'azione di una forza esterna. Essa è elevata quando il materiale non richiede molta energia per fluire.

Misura della fluidità


Esistono diverse tecniche per misurare la scorrevolezza di materiali in polvere:

Angolo di riposo

Il campione viene caricato all'interno di un imbuto e fatto defluire, con opportuni accorgimenti, su una superficie piana. Si calcola successivamente l'angolo del cono rispetto alla superficie piana.

La determinazione si basa sulla considerazione che, in seguito alla formazione di un cono con il materiale analizzato, questo presenterà un angolo alla base tanto maggiore quanto minore è la sua fluidità.

AR=( ALFA 1+ ALFA 2) /2

Flusso attraverso un orifizio

La misura si basa sul passaggio della polvere attraverso un foro circolare di diametro noto. Si possono distinguere 3 varianti della misura:

  1. Misura del tempo totale di passaggio attraverso il foro circolare
  2. Misura della velocità di passaggio attraverso il foro circolare
  3. Determinazione del diametro minimo del foro che permette il passaggio

In tutti i casi abbiamo un cono che dispone nella parte bassa di un foro circolare.

Indice di compressibilità

Il campione viene versato in un cilindro graduato del volume di 250-500ml. Si misura il volume del materiale (Vi) prima di qualunque compattazione. La polvere viene poi ridotta di volume per scuotimento del cilindro, con una procedura dall'alto in basso. Quando non si ha più compattazione si determina il nuovo volume (Vf) del campione. L'indice di compressibilità viene calcolato come variazione percentuale del volume occupato dal materiale prima e dopo compattazione.

\({\displaystyle IC={\frac {(Vi-Vf)x100}{Vi}}}\)

Maggiore è il valore di IC, minore è la fluidità.

Rapporto di Hausner

Una quantità nota di campione viene versata in un cilindro graduato del volume di 250-500ml. Si misura il volume del materiale (\({\displaystyle V_{B}}\)) prima di qualunque compattazione. La polvere viene poi ridotta di volume per scuotimento del cilindro, con una procedura dall'alto in basso. Quando non si ha più compattazione si determina il nuovo volume (\({\displaystyle V_{T}}\)) del campione. Vengono così calcolate la densità apparente (\({\displaystyle {\rho _{B}}={\frac {m_{b}}{V_{B}}}}\)) e la densità tapped (\({\displaystyle {\rho _{T}}={\frac {m_{T}}{V_{T}}}}\)) Il rapporto di Hausner viene calcolato come rapporto tra la densità finale e la densità iniziale.

\({\displaystyle H={\frac {\rho _{T}}{\rho _{B}}}}\)

Maggiore è il valore di HR, minore è la fluidità.

Note


Voci correlate


Altri progetti


Collegamenti esterni


Controllo di autoritàNDL (ENJA00563676









Categorie: Classi di materiali | Materiali granulari




Data: 13.05.2021 05:49:29 CEST

Sorgente: Wikipedia (Autori [Cronologia])    Licenza: CC-BY-SA-3.0

Modifiche: Tutte le immagini e la maggior parte degli elementi di design correlati a questi sono stati rimossi. Alcune icone sono state sostituite da FontAwesome-Icons. Alcuni modelli sono stati rimossi (come "l'articolo ha bisogno di espansione) o assegnati (come" note "). Le classi CSS sono state rimosse o armonizzate.
Sono stati rimossi i collegamenti specifici di Wikipedia che non portano a un articolo o una categoria (come "Redlink", "collegamenti alla pagina di modifica", "collegamenti a portali"). Ogni collegamento esterno ha un'icona FontAwesome aggiuntiva. Oltre ad alcuni piccoli cambiamenti di design, sono stati rimossi i media container, le mappe, i box di navigazione, le versioni vocali e i geoformati.

Notare che Poiché il dato contenuto viene automaticamente prelevato da Wikipedia in un determinato momento, una verifica manuale è stata e non è possibile. Pertanto LinkFang.org non garantisce l'accuratezza e l'attualità del contenuto acquisito. Se ci sono informazioni che al momento sono sbagliate o che hanno una visualizzazione imprecisa, non esitate a Contattaci: e-mail.
Guarda anche: Impronta & Politica sulla riservatezza.