Teoria delle categorie


La teoria delle categorie è una teoria matematica che studia in modo astratto le strutture matematiche e le relazioni tra esse. La nozione di categoria fu introdotta per la prima volta da Samuel Eilenberg e Saunders Mac Lane nel 1945 nell'ambito della topologia algebrica. Le categorie ora appaiono in molte discipline della matematica e in alcune aree dell'informatica teorica e della fisica matematica costituendo una nozione unificante. Informalmente, una categoria è costituita da determinate strutture matematiche e dalle mappe tra esse che ne conservano le operazioni.

Indice

Categorie


Definizione

Una categoria \({\displaystyle {\mathcal {C}}}\) consiste di quanto segue.

La composizione deve soddisfare i seguenti assiomi:

Dagli assiomi si deduce che ad ogni oggetto è associato un unico morfismo identità. Questo permette di dare una definizione diversa di categoria, data dalla sola classe dei morfismi: gli oggetti vengono identificati a posteriori con i corrispondenti morfismi identità.

Una categoria si dice piccola se la classe degli oggetti è un insieme e grande se è una classe propria. Molte importanti categorie sono grandi.

Esempi

Negli esempi le categorie sono indicate tramite i loro oggetti e i corrispondenti morfismi.

Sebbene esistano dei "morfismi" tra le categorie (i funtori) non è possibile definire la "categoria delle categorie", in quanto le categorie che sono classi proprie non possono appartenere ad altre classi (per definizione). È possibile invece parlare della categoria delle categorie piccole, le quali, essendo insiemi, possono appartenere a una classe e quindi essere oggetti di una categoria.

Tipi di morfismi

Un morfismo f: AB si chiama

Funtori


Lo stesso argomento in dettaglio: Funtore (matematica).

I funtori sono mappe tra le categorie che ne conservano le strutture.

Un funtore covariante dalla categoria C alla categoria D è una mappa che associa:

in modo tale che valgano le seguenti proprietà:

Un funtore contravariante è definito in maniera analoga, ma inverte i morfismi, cioè se f:X→ Y, allora F(f):F(Y)→ F(X). Dato un funtore covariante da C a D, il corrispondente funtore da C* a D è contravariante.

Trasformazioni e Isomorfismi naturali


Due funtori F, G : CD ci danno due rappresentazioni di C in D. Una trasformazione naturale è una associazione che permette di "tradurre" l'immagine che ne dà F in quella che ne dà G.

Se F e G sono funtori (covarianti) tra le categorie C e D, allora una trasformazione naturale da F a G associa a ogni oggetto X di C un morfismo ηX : F(X) → G(X) in D tale che per ogni morfismo f : XY in C abbiamo ηY \({\displaystyle _{\circ }}\) F(f) = G(f) \({\displaystyle _{\circ }}\) ηX; vale a dire che η rende commutativo il diagramma

I due funtori F e G si dicono naturalmente isomorfi se esiste una trasformazione naturale da F a G tale che ηX sia un isomorfismo tra oggetti in D per ogni oggetto X in C.

Bibliografia


Voci correlate


Altri progetti


Collegamenti esterni


Controllo di autoritàGND (DE4120552-2









Categorie: Teoria delle categorie




Data: 06.10.2021 09:30:01 CEST

Sorgente: Wikipedia (Autori [Cronologia])    Licenza: CC-BY-SA-3.0

Modifiche: Tutte le immagini e la maggior parte degli elementi di design correlati a questi sono stati rimossi. Alcune icone sono state sostituite da FontAwesome-Icons. Alcuni modelli sono stati rimossi (come "l'articolo ha bisogno di espansione) o assegnati (come" note "). Le classi CSS sono state rimosse o armonizzate.
Sono stati rimossi i collegamenti specifici di Wikipedia che non portano a un articolo o una categoria (come "Redlink", "collegamenti alla pagina di modifica", "collegamenti a portali"). Ogni collegamento esterno ha un'icona FontAwesome aggiuntiva. Oltre ad alcuni piccoli cambiamenti di design, sono stati rimossi i media container, le mappe, i box di navigazione, le versioni vocali e i geoformati.

Notare che Poiché il dato contenuto viene automaticamente prelevato da Wikipedia in un determinato momento, una verifica manuale è stata e non è possibile. Pertanto LinkFang.org non garantisce l'accuratezza e l'attualità del contenuto acquisito. Se ci sono informazioni che al momento sono sbagliate o che hanno una visualizzazione imprecisa, non esitate a Contattaci: e-mail.
Guarda anche: Impronta & Politica sulla riservatezza.